Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats.
نویسندگان
چکیده
AIMS Epilepsy affects 0.5-1% of the world's population, and approximately a third of these patients are refractory to current medication. Given their ability to proliferate, differentiate and regenerate tissues, stem cells could restore neural circuits lost during the course of the disease and reestablish the physiological excitability of neurons. This study verified the therapeutic potential of bone marrow mononuclear cells (BMMCs) on seizure control and cognitive impairment caused by experimentally induced epilepsy. MAIN METHODS Status epilepticus (SE) was induced by lithium-pilocarpine injection and controlled with diazepam 90 min after SE onset. Lithium-pilocarpine-treated rats were intravenously transplanted 22 days after SE with BMMCs obtained from enhanced green fluorescent protein (eGFP) transgenic C57BL/6 mice. Control epileptic animals were given an equivalent volume of saline or fibroblast injections. Animals were video-monitored for the presence of spontaneous recurrent seizures prior to and following the cell administration procedure. In addition, rats underwent cognitive evaluation using a Morris water maze. KEY FINDINGS Our data show that BMMCs reduced the frequency of seizures and improved the learning and long-term spatial memory impairments of epileptic rats. EGFP-positive cells were detected in the brains of transplanted animals by PCR analysis. SIGNIFICANCE The positive behavioral effects observed in our study indicate that BMMCs could represent a promising therapeutic option in the management of chronic temporal lobe epilepsy.
منابع مشابه
Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy
In this study, we investigated the therapeutic potential of bone marrow mononuclear cells (BMCs) in a model of epilepsy induced by pilocarpine in rats. BMCs obtained from green fluorescent protein (GFP) transgenic mice or rats were transplanted intravenously after induction of status epilepticus (SE). Spontaneous recurrent seizures (SRS) were monitored using Racine's seizure severity scale. All...
متن کاملThe effect of agonist and antagonist of Nociceptine/Orphanin FQ receptor on seizure and cognitive dysfunction in experimental model of temporal lobe epilepsy in male rat
Background: Temporal lobe epilepsy is a chronic neurological disorder characterized by spontaneous seizures, learning and memory deficiency, loss of neurons, mossy fiber sprouting and tissue apoptosis. This study was to investigate the effect of NOP receptor agonist (MCOPPB) and antagonist (SB612111) on seizure and cognitive dysfunction and histological studies in experimental model of temporal...
متن کاملIn vitro Effect of Pomalidomide on Bone Marrow Mononuclear Cells from Multiple Myeloma Patients
Background: Many features of anticancer drugs, including cytotoxicity and/or cytokine induction, are studied using cell lines orhuman blood leukocytes. However, in a disease such as multiple myeloma, most cancerous cells are resided within bone marrowmononuclear cells. In the present study, we investigated the effect of pomalidomide on apoptosis and IL-2 production of bonemarrow mononuclear cel...
متن کاملEffect of Microwave Wi-Fi Radiation at Frequency of 2.4 GHz on Epileptic Behavior of Rats
Background: Electromagnetic fields (EMF) with different intensities are widely used at home, offices and public places.Today, there is a growing global concern about the effects of human exposure to EMFs. Epilepsy is one of the most common chronic neurological diseases, affecting 50 million people of all ages worldwide. We aimed to investigate the effect of exposure to Wi-Fi radiation on epilep...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Life sciences
دوره 89 7-8 شماره
صفحات -
تاریخ انتشار 2011